Human life span

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flowkick.top/science/life-span
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: longevity
Related Topics:
life
aging

The exact duration of human life is unknown, although there is presumably a maximum life span for the human race established in the genetic material. At first thought, this statement seems irrational. Surely no human can live 1,000 years. Even though all may agree that the likelihood of an individual living 1,000 years is infinitesimal, there is no scientific proof that this statement is or is not true. The indeterminacy of the maximum limit of human life is made more comprehensible if one chooses a number that may appear to be a more reasonable limit.

Since there is no verified instance of a person having lived 150 years, this number may, for purposes of illustration, be arbitrarily accepted as the maximum limit of the span of human life. But if the possibility is admitted that an individual may live exactly 150 years, there is no valid reason for rejecting the possibility that some other individual may live 150 years and one minute. And if 150 years and one minute is accepted, why not 150 years and two minutes, and so on? Thus, based on existing knowledge of longevity, a precise figure for the span of human life cannot be given.

Studies on longevity

Much information concerning the inheritance of longevity has come from the study of genealogical records of nobility and landed gentry. The early genealogical studies were criticized on the grounds that the downward trend in the death rate (attributable generally to scientific advancements) introduced a spurious correlation in statistics derived from records extending over long periods of time. It was argued that in some instances records were included of persons who, at the time of the study, had not had the opportunity of living out their possible life span. The general finding of such investigations was that the expectation of life of sons of long-lived parents (i.e., those living to age 70 years or older) was greater than that of sons of shorter-lived parents (i.e., those having attained less than age 50 at the time of death).

An American biostatistician attempted to avoid the defects of genealogical studies by collecting records of the family histories of 365 nonagenarians (90-year-old persons) and of a comparison group of 143 individuals of varying ages, selected because all of their six immediate ancestors were dead. The study introduced the concept of “total immediate ancestral longevity,” or TIAL—the sum of the ages at death of the two parents and the four grandparents of a given person—as a measure of longevity. This number is unlikely to be greater than 600 or less than 90. The average TIAL of the nonagenarians and centenarians definitely exceeded that of the comparison group. This held true not only for the six immediate ancestors as a group but also for each category—father, mother, paternal and maternal grandparents. In the same study, investigators also computed the expectation of life for sons of fathers as classified in three groups by age at death: (1) under age 50, (2) from age 50 to age 79, and (3) age 80 or over. The expectation of life for the three groups at birth was 47.0, 50.5, and 57.2 years, respectively. The same relative ranking continued through the lifetime of the sons, their expectation of life at age 40 being 27.3, 28.9, and 32.0 years, respectively.

While certain doubts have been raised about the validity of these as well as earlier studies, taken at their face value, these data show clearly that long-lived persons had parents and grandparents who lived longer than the parents and grandparents of shorter-lived persons.

Since longevity is important in life insurance underwriting, several studies have been made of the relationship between heredity and the life span by an analysis of life insurance records. Such analyses showed that policyholders both of whose parents were living when the policy was written live longer than those whose parents were dead when the policy was written. These results are in conformity with those obtained from genealogical records and family histories.

Each of the various types of studies of the inheritance of longevity—genealogical records, life insurance records, and family histories of the general population—has limitations that restrict the applicability of the findings. The principal studies indicate, nevertheless, that the children of long-lived parents are more likely to be long-lived than are the children of short-lived parents. Conversely, the immediate ancestors—parents and grandparents—of long-lived persons on the average are older at death than are the immediate ancestors of persons who die at a relatively young age. These studies support the conclusion, mentioned earlier, that longevity is determined in part by heredity.

Actual versus possible life span

It should be observed that this conclusion relates to the inheritance of longevity—the observed expression of the span of life—and not to the span of life itself. The actual length of life itself is shorter than the possible life span, since the former reflects the effect of unfavourable environmental factors. In the absence of any biological data from which the maximum limit of the span of life can be determined precisely, an estimate of the limit must be obtained from observation of the actual length of life of persons who already have died. But such observations cannot establish a fixed limit for the span of life.

The estimation of the length of the span of life from observed data is a form of sampling from a large but incomplete population. The tabulation of the ages at death of a large number of persons from a large general population of the United States will give an asymmetrical frequency distribution with two modes, or peaks, of highest frequency: the first at age less than one year and the second between ages 75 and 80 years. The frequency distribution is bounded by age zero at the lower limit but there is no boundary at the upper limit. The number of deaths of persons whose length of life is near the upper limit of this frequency distribution (e.g., 100 years or more) varies from year to year. The age of the oldest person dying also varies from year to year.

The number of deaths of centenarians (100-year-old persons) depends in part upon the number of deaths counted. Ages at death are frequently unverified, so that the true numbers of centenarians almost certainly deviate from those given in official vital statistics. Moreover, only a very small proportion of the deaths that have occurred throughout the history of the human race have been registered. The potential number of future deaths greatly exceeds the number that already has occurred. Statistical theory supports the expectation that as the total number of deaths continues to increase, the death of a person whose length of life will be longer than that of any person previously known will be recorded.

Observation of the length of life of persons who have died can show that it is possible for a human to live to the oldest age recorded as of any specified date and can provide an estimate of the relative frequency or probability of that event. But such observations do not provide a logical basis for fixing any age as the maximum possible limit of the life span.

The continuation of the worldwide decline in the death rate will naturally result in an increase in the number of persons who live until age 100 years or more. Since the number of persons who may live to an advanced age, such as 110 or 115 years, is directly related to the number of persons who live to age 100, an increase in the latter number will increase the probability that the death of an individual attaining some greater age (e.g., 115 years) will be recorded at some future date.

Many instances of persons alleged to have died at an age considerably greater than 100 years have been recorded. Statements concerning the age at death of biblical characters such as Methuselah can be dismissed, since scientific verification is impossible. Three of the most frequently cited cases of more recent times are: Thomas Parr, who died in November 1635 at the alleged age of 152 years; Henry Jenkins, who died in December 1670 at the alleged age of 169 years; and Catherine, countess of Desmond, who died in 1604 at the alleged age of 140 years. William Harvey, a famous English physician, performed an autopsy on Thomas Parr and the account of the autopsy was cited for many years as evidence that Harvey—in his paper—had confirmed Parr’s age. Quite apart from the fact that it is impossible to accurately determine the age of a person by an autopsy, Harvey made no attempt to verify Parr’s age but merely referred to the current estimates. Subsequent investigations have revealed that no proof exists of the age at death of any of these three individuals and that their reported ages were based solely upon hearsay.

Based on modern records, multiple persons have had life spans exceeding 115 years. This does not mean the span of life of each individual now living or to be born in the future is at least 115 years. The span of life, since it is determined by heredity, varies from one individual to another as do other genetically determined traits.

A significant proportion of human embryos and fetuses die before birth. Other infants at birth have defects that limit their span of life to a few years. Some malformations (e.g., certain cardiovascular defects) are developmental rather than genetic in the strict sense of the word and can be corrected so that the length of life of such persons is extended.

In the past the length of life of most individuals has been considerably shorter than their possible span of life because of unhealthful environmental factors. As these factors are increasingly brought under control or eliminated, the actual length of life will approach more closely the span of life. At the end of the 18th century the expectation of life at birth in North America and northwestern Europe was about 35 or 40 years. It exceeded 70 years by 1970 and 78 years by 2015.

There is no evidence that the span of human life has increased since the beginning of recorded history. Neither is there any evidence that the death rate of centenarians has decreased. The expected increase in the number of centenarians results from a decrease in the death rate at ages under 100 years and not from any demonstrable increase in the maximum length of the span of life. The remarkable increase in the average length of life during the past 2,000 years—from 20 to 25 years to more than 75 years under favourable conditions—has increased the likelihood that a person may live to the maximum limit of his or her span of life.

Peter W. Frank