Interactions with inorganic and organic compounds

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flowkick.top/science/clay-mineral
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Smectite, vermiculite, and other expansible clay minerals can accommodate relatively large, inorganic cations between the layers. Because of this multivalency, the interlayer space is only partially occupied by such inorganic cations that are distributed in the space like islands. Hydroxy polymers of aluminum, iron, chromium, zinc, and titanium are known examples of the interlayering materials. Most of these are thermally stable and hold as pillars to allow a porous structure in the interlayer space. The resulting complexes, often called pillared clays, exhibit attractive properties as catalysts—namely, large surface area, high porosity, regulated pore size, and high solid acidity.

Cationic organic molecules, such as certain aliphatic and aromatic amines, pyridines, and methylene blue, may replace inorganic exchangeable cations present in the interlayer of expansible minerals. Polar organic molecules may replace adsorbed water on external surfaces and in interlayer positions. Ethylene glycol and glycerol are known to form stable specific complexes with smectites and vermiculites. The formation of such complexes is frequently utilized for identifying these minerals. As organic molecules coat the surface of a clay mineral, the surface of its constituent particles changes from hydrophilic to hydrophobic, thereby losing its tendency to bind water. Consequently, the affinity of the material for oil increases, so that it can react with additional organic molecules. As a result, the surface of such clay materials can accumulate organic materials. Some of the clay minerals can serve as catalysts for reactions in which one organic substance is transformed to another on the mineral’s surface. Some of these organic reactions develop particular colours that may be of diagnostic value in identifying specific clay minerals. Organically clad clay minerals are used extensively in paints, inks, and plastics.

Physical properties

Clay mineral particles are commonly too small for measuring precise optical properties. Reported refractive indices of clay minerals generally fall within a relatively narrow range from 1.47 to 1.68. In general, iron-rich mineral species show high refractive indices, whereas the water-rich porous species have lower ones. Specific gravities of most clay minerals are within the range from 2 to 3.3. Their hardness generally falls below 21/2, except for antigorite, whose hardness is reported to be 21/2–31/2.

Size and shape

These two properties of clay minerals have been determined by electron micrographs. Well-crystallized kaolinite occurs as well-formed, six-sided flakes, frequently with a prominent elongation in one direction. Halloysite commonly occurs as tubular units with an outside diameter ranging from 0.04 to 0.15 micrometre.

Electron micrographs of smectite often show broad undulating mosaic sheets. In some cases the flake-shaped units are discernible, but frequently they are too small or too thin to be seen individually without special attention.

Illite occurs in poorly defined flakes commonly grouped together in irregular aggregates. Although their sizes vary more widely, vermiculite, chlorite, pyrophyllite, talc, and serpentine minerals except for chrysotile are similar in character to the illites. Chrysotile occurs in slender tube-shaped fibres having an outer diameter of 100–300 Å. Their lengths commonly reach several micrometres. Electron micrographs show that palygorskite occurs as elongated laths, singly or in bundles. Frequently the individual laths are many micrometres in length and 50 to 100 Å in width. Sepiolite occurs in similar lath-shaped units. As mentioned above, allophane occurs in very small spherical particles (30–50 Å in diameter), individually or in aggregated forms, whereas imogolite occurs in long (several micrometres in length) threadlike tubes.

High-temperature reactions

When heated at temperatures beyond dehydroxylation, the clay mineral structure may be destroyed or simply modified, depending on the composition and structure of the substance. In the presence of fluxes, such as iron or potassium, fusion may rapidly follow dehydroxylation. In the absence of such components, particularly for aluminous dioctahedral minerals, a succession of new phases may be formed at increasing temperatures prior to fusion. Information concerning high-temperature reactions is important for ceramic science and industry.

Solubility

The solubility of the clay minerals in acids varies with the nature of the acid and its concentration, the acid-to-clay ratio, the temperature, the duration of treatment, and the chemical composition of the clay mineral attacked. In general, ferromagnesian clay minerals are more soluble in acids than their aluminian counterparts. Incongruent dissolutions may result from reactions in a low-acid-concentration medium where the acid first attacks the adsorbed or interlayer cations and then the components of the octahedral sheet of the clay mineral structure. When an acid of higher concentration is used, such stepwise reactions may not be recognizable, and the dissolution appears to be congruent. One of the important factors controlling the rate of dissolution is the concentration in the aquatic medium of the elements extracted from the clay mineral. Higher concentration of an element in the solution hinders to a greater degree the extractions of the element.

In alkaline solutions, a cation-exchange reaction first takes place, and then the silica part of the structure is attacked. The reaction depends on the same variables as those stated for acid reactions.