Applications

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flowkick.top/science/Mossbauer-effect
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: recoil-free gamma-ray resonance absorption

Mössbauer’s discovery has had far-reaching consequences because it has made available electromagnetic radiation (gamma rays) whose frequency is more precisely defined than any other known to date and has provided a new technique for measuring the interaction of nuclei with their environment. Energy resolution better than one part in 1012 has been achieved with recoil-free gamma rays.

The Mössbauer effect has found application in many areas of science. In relativity studies the high precision with which the energy of the gamma ray can be measured has made possible a direct demonstration of the gravitational red-shift; i.e., the change in the energy of a quantum of electromagnetic radiation as it moves through a gravitational field. This was accomplished by measuring the Doppler shift required to compensate for the change in the energy of the gamma ray resulting from a change in vertical position of 2,260 centimetres through the Earth’s gravitational field. The measured change amounted to 2.5 parts in 1015 (a Doppler velocity of 2.7 millimetres per hour) and was in close agreement with theoretical predictions. That is, it was found that a photon of energy E behaves as though it had a mass of E/c2, in which c is the velocity of light. In a related experiment it was found that the energy of the recoil-free gamma ray decreases with increasing source temperature. This thermal red-shift can be interpreted in a number of ways. It may be viewed as a second-order relativistic Doppler effect resulting from the mean square velocity of the atoms in the solid; i.e., the thermal motion. On the other hand, it can be viewed as a direct demonstration of the relativistic time dilation; i.e., the slowing down of the clock in a moving coordinate system, here the atom, when viewed by a stationary observer. It has been argued that the Mössbauer effect thermal red-shift provides direct experimental resolution of the famous twin paradox of relativity by showing that a space traveler will be younger upon return to Earth than his stay-at-home twin.

Applications in nuclear physics are manifold. The Mössbauer effect makes possible the direct measurement of a gamma-ray line width, which corresponds to the width of the decaying nuclear level. Results are in close agreement with the measured decay time, indicating that the width of recoil-free gamma rays in fact is determined entirely by the lifetime of the decaying state. The isomer shift, the change in the energy of a nuclear gamma ray due to the electrostatic interaction between nuclear and electronic charge, provides a measurement of the change in the nuclear-charge radius when the nucleus is raised to an excited state. The splitting of nuclear levels into hyperfine components by electric field gradients in crystals of low symmetry or by magnetic fields in ferromagnets makes possible the measurement of nuclear electric quadrupole and magnetic dipole moments. Both isomer shifts and hyperfine structure splittings are readily resolved in Mössbauer spectra. The energy width of a Mössbauer resonance provides a direct measurement of the width of the excited state involved in the gamma-ray emission and absorption process. From the width, the lifetime of the excited state can be directly obtained.

Applications in solid-state physics fall broadly into the categories of lattice dynamics and hyperfine interactions, although contributions have been made in other areas. The probability that a gamma-ray emission process will be recoil free depends on the amplitude of the thermal vibrations compared to the wavelength of the gamma ray. A measurement of the fraction of emission events that are recoil free as determined by their ability to be resonantly absorbed provides the mean square amplitude of the thermal motion in the solid. Using single crystals, the amplitude of the motion can be measured in specific crystallographic directions, providing a stringent test of lattice dynamical models. The thermal red-shift mentioned above gives in addition the mean square thermal velocity.

Magnetic hyperfine interactions have been particularly useful in the study of magnetically ordered materials; i.e., ferromagnets, ferrimagnets, and antiferromagnets. The hyperfine interaction gives an indirect measure of the magnetization of the lattice of magnetic ions and has been used to elucidate the details of magnetic interactions as well as their temperature dependence.

Applications in chemistry are based largely on the isomer shift and quadrupole splitting. The former measures the s-electron charge density at the nucleus and gives information on the character of chemical bonds; e.g., valence and covalence. The latter is sensitive both to the symmetry of the structural environment and to the wave function of the outer electrons of the atom containing the Mössbauer nucleus. The technique has been applied to the study of metal-organic compounds of tin and iron, including hemoproteins; to inorganic compounds of iron, tin, iodine, and the rare earths; as well as to clathrates, catalysts, and glasses containing dilute Mössbauer isotopes.